phoenestra

EVscale[™]: A Novel Manufacturing System for Standardized Extracellular Vesicles from telomerized human Mesenchymal Stromal Cells

> R Prielhofer, C Lindner, M Reininger, I Hartl, <u>K Graumann</u> Phoenestra GmbH (Linz, Austria) klaus.graumann@phoenestra.com, www.phoenestra.com

The Case for Extracellular Vesicles (EV)

EV are natural and universal 'cargo ships' between cells in all organisms and tissues

EV display biologically relevant mechanisms of action (MoA) e.g., EV derived from Mesenchymal Stromal Cells (MSC):

- Anti-inflammation
- Anti-fibrosis
- Tissue-protection
- **Pro-angiogenesis** Proliferation

EV possess Broad Therapeutic potential in Regenerative Medicine e.g., in:

- Acute Lung Inflammation
- Lung / Liver / Kidney Fibrosis
- Cardiac Fibrosis

EVscale[™] – Extracellular Vesicles *at* **scale** - In a Nutshell

End-to-end approach

- ✓ Xeno-free, telomerized MSC lines
- Cell Banking (MCB/WCB approach)
- Scalable Technology Platforms
- Systematic Process Development
- GMP manufacturing resources in preparation

Quality, regulatory and cost

- ✓ Compliant sourcing
- **GMP-ready MSC/TERT Lines** \checkmark
- Quality Control Strategy
- Product Characterization and Definition

Tissue Source

Adipose Tissue

Bone Marrow

Placenta

Dental Pulp

Several

Leading Productivity

Code

ASC/TERT

BM-MSC/TERT

✓ Leading Cost of Manufacturing

- **Organ Injury**
 - CNS Inflammation, Neurodegeneration

Extracellular Vesicles (EV) from different cell sources offer great promise for therapeutic applications in Regenerative Medicine. However, manufacturing of EV in needed quantities and with consistent quality attributes has proven difficult. Therefore, Phoenestra has recently developed a scalable manufacturing setup using stable, telomerized MSC (MSC/TERT) lines which are fully documented and characterized (GMP-grade). With this proprietary setup (EVscale[™]), we have been assessing the consistent manufacturing of MSC/TERT EV from different tissues. In a next step, preparative and analytical chromatographic separation is used to further study determinants of biological functionalities.

Upstream - Agitated Packed Bed Bioreactor System*

Stirred Bioreactor and Phoenestra's Proprietary Packed Bed Perfusion System

We have developed a scalable perfusion process setup including an agitated packed-bed filled with cell carrier material which allows for serum- and platelet lysate-free MSC/TERT expansion and continuous EV/exosome harvest for several weeks. Process performance and EV yield for an example process are summarized below. Theoretical clinical doses have been calculated based on assumptions:

Exemplary case	Seed (Day 0)	Harvest (Day 23)	Total Particle	1 3.10¹³ narticles (11 harvests 6.81)
Total Cells	1.3·10 ⁷	2.2·10 ⁸	Harvest*	
		0.9.10 ⁶ * (17-fold)	EV productivity	5000 - 10000 particles/cell/d
Cells / mL	5·10 ⁴	$0.4 - 1.1 \cdot 10^6 ** (\mu = 0.1 - 0.2 d^{-1})$	Theoretical Clinical	30 doses in total from a 250 mL
Cells / cm2	2.10 ³	3.3·10 ⁴	Patient Doses**	bioreactor unit
Cell Proliferation	17-	fold, μ = 0.1 - 0.2 d ⁻¹	*measured by nanoparticle tracking analysis (NTA), ** Assumptions: 70% lipid particles, 50% downstream recovery,	
			1.5x10 ¹¹ EV/dose (NCT)	05125562)

Telomerized MSC (MSC/TERT) Library

Phoenestra uses fully documented and characterized MSC/TERT lines*. These stable MSC lines have distinct advantages versus primary MSCs:

- Stable phenotype and growth
- Consistent quality of cells and EV
- Proven biological activities
- Tiered cell banking concept possible * In collaboration with Evercyte GmbH

Towards Rational Selection of EV Preparations for Further Use

EV preparations (TFF retentates and chromatographic fractions) are characterized with a panel of orthogonal methods to assess differences in EV composition and/or biological activities as well as correlations which could help understand components of biological activities better.

6 NanoFCM analysis of the EV tetraspanins CD63, CD81 and CD9 (red dots) in a representative TFF retentate sample. Non-stained nonlipid particles (yellow), stained nonlipid particles (green) and unstained lipid particles (blue) are shown.

GMP ready

Yes

Yes

Yes

Yes

Yes

Yes

In prep

In collaboration with

GO

EVERCYTE

Anti-marker Abs: APC (PC5) labelled

*Cell Titer Glo Assay, ** Calculation from Glucose Consumption Rates

Isolation and Chromatographic Separation of EV

EV/exosome containing supernatants are at first depth-filtered, then concentrated and bufferexchanged by Tangential Flow Filtration (TFF). With this downstream setup we achieve particle yields of 50 – 70 % (NTA). The resulting retentates are subject to in-depth analytical characterization and further downstream processing (e.g., fractionation via anion-exchange chromatography).

1 Particle yields and median particle sizes (both by NTA) of a representative TFF operation; **2** Protein content of TFF process samples from harvests of an MSC/TERT-bioreactor perfusion run; **3** Protein to particle ratio of retentates processed with two different TFF cutoffs; **4** Example chromatogram of an Anion-exchange chromatography separation (CIMmultus QA[™], BIA Separations d.o.o.) of an MSC/TERT-EV TFF retentate; **5** Protein-to-particle ratio of the flow-through (FT) and fractions E1-E5 from 2 chromatographic separations.

7 Anti-inflammatory activity of EV preparations (TFF retentates) from a P-MSC/TERT perfusion run over 28 days show reduction in NO secretion in the range of the positive control (10 µM Dexamethasone, LPS trigger of mouse macrophages); 8 Dose-dependent anti-fibrotic activity of a TFF retentate from a CP-MSC/TERT perfusion run at day 23. Fibroblast cells are triggered with TGF-β to induce α-SMA (α-smooth muscle actin) expression, the Src-kinase inhibitor PP2 is used as a positive control.

9 Small RNA sequencing gives distinct miRNA patterns for each MSC/TERT cell line. The Top 15 miRNAs from a CP-MSC/TERT-EV preparation (TFF retentate) are shown. **10** Correlations between miRNA patterns and marker expression or bioactivities are investigated. An example of a linear, inverse correlation between cell-based activity (anti-inflammatory) and the expression of a specific miRNA (miR-D) with known M1 macrophage polarization activity in an ASC/TERT-EV preparation (TFF retentate) is shown. These correlations will be investigated further.

Chromatographic fractions generated by quantitative CIMmultus QA separation of a TFF retentate have been tested for anti-fibrotic activity. Also, small RNA sequencing of the chromatographic fractions addressed potential changes in miRNA profiles in the collected fractions.

Analysis of chromatographic fractions with the PATfix[®] HPLC platform

PATfix[®] enables analytical separation (size-exclusion shown) and online detection of A260/280, Fluorescence (FLD) and Light Scattering (MALS) for deeper insights into processed EV samples: the tetraspanin marker distribution in chromatography fractions is shown (graph to the right).

	C4	EJ
king of miRNAs based	miR-A	miR-A
otal reads	miR-C	miR-B
	miR-E	miR-D
	miR-B	miR-F
	miR-D	miR-H

11 Fractions E1, E2 and E5 showed significant anti-fibrotic activity. The detailed composition of these fractions is currently under investigation **12** Also miRNA patterns (Top 5 per fraction shown) change over the CIM QA elution peak, correlations with bioassay data etc., are under investigation.

Conclusions

- EVscale[™] sets the stage for efficient and scalable EV manufacturing from different cell lines (MSC/TERT) which will be straight forward to translate into GMP manufacturing
- Already from 250 mL bioreactors we can produce EV quantities meaningful for clinical studies
- These MSC/TERT EV display functional biological activities in cell-based bioassays
- Preparative and analytical chromatographic separation delivers fractions with different protein-toparticle ratio, different EV marker protein and miRNA patterns as well as biological activities
- With EVscale[™] we present an excellent platform approach for producing clinical-grade EV and the approach for defining therapeutic EV product candidates for various conditions